首页 > 留学知识库

问题: 椭圆

设P是椭圆X^2/9+Y^2/4=1上一点,F1,F2是椭圆的两个焦点,则COSF1PF2的最小值是(  )A-1/9  B -1 C 1/9 D1/2

解答:

a =3,b =2 ==>c =根号5

===>F1P +F2P =2a =6 F1F2 =2c =2(根号5)


cosF1PF2 =[(F1P)^ +(F2P)^ -(F1F1)^]/2F1PF2P

显然,(F1F1)^=20
因为F1P +F2P =2a
当F1P =F2P=a=3时分子最小,分母最大,分数值最小
cosF1PF2 = [3^+3^-20]/2*3*3 = -1/9