首页 > 留学知识库

问题: 初三一元二次方程

已知关于x的一元二次方程x²-(3k+1)x+xk²+2k=0
1求证 无论k为何值,方程总有实数根
2若等腰三角形ABC的一边长a=6,另两边bc恰好是这个方程的两个实数根,求三角形的三边长

解答:

你把题抄错了吧,原方程x^2-(3k+1)x+2k^2+2k=0.还有得写。
解:
(1)原方程的判别式为:
△=[-(3k+1)]²-4(2k²+2k)
=9k²+6k+1-8k²-8k
=k²-2k+1
=(k-1)²≥0
所以,无论k取任何实数,原方程总有实数根;

(2)若b、c是两腰,则b=c,那么判别式△=0,则得出k=1,代入原方程得:
x²-4x+4=0
(x-2)²=0
x=2
则b+c=2+2=4<a=6,不能构成三角形;
所以b、c中,一个是底边,一个是腰,则a也是腰,为方便起见,令b为腰,则b=a=6,代入原方程,得:
6²-(3k+1)*6+2k²+2k=0
36-18k-6+2k²+2k=0
k²-8k+15=0
(k-3)(k-5)=0
k=3和5,
将k=3和5分别代入原方程,可得:
方程一:x²-10x+24=0,得x=4和6;则c=4;
方程二:x²-16k+60=0,得x=6和10,则c=10;
所以有两种情形:
①a=6,b=6,c=4,周长=6+6+4=16;
②a=6,b=6,c=10,周长=6+6+10=22;