首页 > 留学知识库

问题: f(n)=cos(n/5π),求f(1)+f(2)+f(3)+...+f(100)

数学

解答:

∵ f(1)+f(2)+f(3)+...+f(10)=
cos(π/5)+cos(2π/5)+cos(3π/5)+cos(4π/5)+cosπ+cos(6π/5)+cos(7π/5)+cos(8π/5)+cos(9π/5)+cos(2π)
=cos(π/5)+cos(2π/5)+cos(3π/5)-cos(π/5)-1-cos(π/5)-cos(2π/5)-cos(3π/5)+cos(π/5)+1=0
而f(n)=cos(n/5π)的周期I=10,
∴ f(1)+f(2)+f(3)+...+f(100)=10×0=0