问题: f(n)=cos(n/5π),求f(1)+f(2)+f(3)+...+f(100)
数学
解答:
∵ f(1)+f(2)+f(3)+...+f(10)=
cos(π/5)+cos(2π/5)+cos(3π/5)+cos(4π/5)+cosπ+cos(6π/5)+cos(7π/5)+cos(8π/5)+cos(9π/5)+cos(2π)
=cos(π/5)+cos(2π/5)+cos(3π/5)-cos(π/5)-1-cos(π/5)-cos(2π/5)-cos(3π/5)+cos(π/5)+1=0
而f(n)=cos(n/5π)的周期I=10,
∴ f(1)+f(2)+f(3)+...+f(100)=10×0=0
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。