问题: 数学
求下列极限:
1】lim【1/(1+x)+3x^2/(1+x^2)】
x→∞
2】lim【√(1+x)-1】/【√(4+x)-2】
x→0
解答:
1】lim【1/(1+x)+3x^2/(1+x^2)】 =
x→∞
lim【1/(1+x)+[3(1+x^2)-3]/(1+x^2)】 =
x→∞
lim【1/(1+x)+3-3/(1+x^2)】 =
x→∞
0+3-0=3
2】lim【√(1+x)-1】/【√(4+x)-2】=
x→0
lim{【√(1+x)-1】*【√(1+x)+1】*【√(4+x)+2】}/
{【√(1+x)+1】*【√(4+x)-2】*【√(4+x)+2】}=
lim{x*【√(4+x)+2】}/{【√(1+x)+1】*x}=
x→0
lim【√(4+x)+2】/【√(1+x)+1】=
x→0
【√(4+0)+2】/【√(1+0)+1】=
(2+2)/ (1+1)=
2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。