首页 > 留学知识库

问题: 高中不等式

设x,y,z>=0,且yz+zx+xy=1.求证
(x^4-x^2+3+yz)/(1+x^2)+(y^4-y^2+3+zx)/(1+y^2)
+(z^4-z^2+3+xy)/(1+z^2)>=7

解答:

设x,y,z>=0,且yz+zx+xy=1.求证
(x^4-x^2+3+yz)/(1+x^2)+(y^4-y^2+3+zx)/(1+y^2)
+(z^4-z^2+3+xy)/(1+z^2)>=7

证明 所证不等式齐次化,等价于
Σ[x^4+3(Σyz)^2+(yz-x^2)Σyz]/[(x+y)(x+z)]>=7Σyz (1)

(1)<===>
Σ[(y+z)x^4+6Σx*(Σyz)^2]>=7(y+z)(z+x)(x+y)Σyz (2)

(2)<===>
Σ(y+z)x^4-Σ(y^2+z^2)x^3-2xyz(Σx^2-Σyz)>=0 (3)

设x=min(x,y,z),(3)式分解为:
x^2*(y+z)(x-y)(x-z)+[(y+z)(yz-x^2)+x(y^2+z^2)](y-z)^2>=0
显然成立.