首页 > 留学知识库

问题: 初一数学题

1. 若a,b,c,d,为任意有理数,且(a+b)(a+b)+(b+c)(b+c)+(c+d)(c+d)=d(ab+bc+cd),求证:a=b=c=d.

2. 已知x,y,z都为有理数,满足x=10-y,z*z=xy-25求x,y,z的值

解答:

1.(a+b)(a+b)+(b+c)(b+c)+(c+d)(c+d)-4(ab+bc+cd)
=(a*a+2ab+b*b-4ab)+(b*b+2bc+c*c-4bc)+(c*c+2cd+d*d-4cd)
=(a*a-2ab+b*b)+(b*b-2bc+c*c)+(c*c-2cd+d*d)
=(a-b)(a-b)+(b-c)(b-c)+(c-d)(c-d)
∵(a+b)(a+b)+(b+c)(b+c)+(c+d)(c+d)=4(ab+bc+cd)
∴(a+b)(a+b)+(b+c)(b+c)+(c+d)(c+d)-4(ab+bc+cd)=0
∴(a-b)(a-b)+(b-c)(b-c)+(c-d)(c-d)=0
∴a-b=b-c=c-d=0
∴a=b=c=d

2.z*z=xy-25
即z*z=(10-y)y-25=-y*y+10y-25=-(y-5)(y-5)
即z*z=-(y-5)(y-5)-(y-5)(y-5)≤0且z*z≥0
∵0≤z*z=-(y-5)(y-5)≤0
∴z*z=-(y-5)(y-5)=0
∴z=0,y=5
∴x=10-y=5