首页 > 留学知识库

问题: 高中不等式

求证:1/1^1+1/2^2+1/3^2+…+1/n^2<7/4

解答:

欧拉证明:1/1²+1/2²+1/3²+...+1/n²+... = π²/6

∵sin(x)/x=0的解为x=±π,±2π,...,±nπ,...
--->sin(x)/x=(1-x²/π²)[1-x²/(2π)²][1-x²/(3π)²]...[1-x²/(nπ)²]...
此式右边展开后x²项系数为-[1+1/(2π)²+1/(3π)²+...+1/(nπ)²+...]
另外,按级数展开:sin(x)/x = 1-x²/3!+x^4/5!-...

比较x²项系数,有:1+1/(2π)²+1/(3π)²+...+1/(nπ)²+...=1/3! = 1/6
--->1/1²+1/2²+1/3²+...+1/n²+...=π²/6

显然 1/1²+1/2²+1/3²+...+1/n²< π²/6<7/4