问题: 线代题四
设3阶实对称矩阵A的特征值为-1,1(二重),对应于-1的特征向量为(0 1 1)',求矩阵A
解答:
实对称阵对应不同特征值的特征向量正交。设1的特征向量(a,b,c)则(0,1,1)(a,b,c)=b+c=0.得两个特征向量(1,1,-1),(1,-1,1).所得T=((0,1,1)'(1,1,-1)'(1,-1,1)'),T-1=0.25((0,2,2)(2,1,-3)(2,-1,1)).
最后A=(T-1)diag(-1,1,1)T
(没加转置的向量在矩阵中按行排列)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。