首页 > 留学知识库

问题: 高一数学

已知数列{an}的前n项和为Sn,且对任意的n属于N+.有an+sn=n.(1)证数列{an-1}为等比数列.(1)设c1=a1且Cn=an-a(n-1)(n>=2)求{cn}通项公式.

解答:

n=1 ,a1+a1=1 ===>a1=1/2

an+Sn=n .............(1)
a(n-1)+S(n-1)=n-1...........(2)
(1)-(2)
an-a(n-1)+an=1
2an=a(n-1)+1
an-1=(1/2)[a(n-1)-1]
=(1/2)^2 [a(n-2)-1]
......
=(1/2)*(1/2)^(n-1)
{an-1}是以a1=1/2 ,q =1/2的 等比数列


2)an-1 =(1/2)*(1/2)^(n-1) =(1/2)^n
an =(1/2)^n +1
a(n-1)=(1/2)^(n-1) +1
Cn=an-a(n-1) =(1/2)^n -(1/2)^(n-1)
= -(1/2)^n
{cn}通项公式.c1=1/2 ,Cn =-(1/2)^n ,(n>=2)