问题: 高一数学请教
已知f(x)=1/(1-x)x+1/(2-x)(x-1)+1/(3-x)(x-2)
当x在(1,2)时,写出f(x)的单调区间,以及在每一个单调区间上函数f(x)的单调性,并证明结论。
解答:
f(x)=1/(1-x)x+1/(2-x)(x-1)+1/(3-x)(x-2)
=-【1/(x-1)x+1/(x-2)(x-1)+1/(x-3)(x-2) ]
=-[1/(x-1)-1/x+1/(x-2)-1/(x-1)+1/(x-3)-1/(x-2)]
=-[-1/x+1/(x-3)]
=1/x-1/(x-3)
=-3/[x(x-3)]
u=x(x-3)=(x-3/2)^2-9/4
u(x)在(1,3/2】单调递减,f(x)在(1,3/2】单调递减,
u(x)在(3/2,2)单调递增,f(x)在(1,3/2)单调递增,
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。