首页 > 留学知识库

问题: 高一数学请教

已知f(x)=1/(1-x)x+1/(2-x)(x-1)+1/(3-x)(x-2)
当x在(1,2)时,写出f(x)的单调区间,以及在每一个单调区间上函数f(x)的单调性,并证明结论。

解答:

f(x)=1/(1-x)x+1/(2-x)(x-1)+1/(3-x)(x-2)
=-【1/(x-1)x+1/(x-2)(x-1)+1/(x-3)(x-2) ]
=-[1/(x-1)-1/x+1/(x-2)-1/(x-1)+1/(x-3)-1/(x-2)]
=-[-1/x+1/(x-3)]
=1/x-1/(x-3)
=-3/[x(x-3)]
u=x(x-3)=(x-3/2)^2-9/4
u(x)在(1,3/2】单调递减,f(x)在(1,3/2】单调递减,
u(x)在(3/2,2)单调递增,f(x)在(1,3/2)单调递增,