首页 > 留学知识库

问题: 一元二次不等式解法

已知三角形ABC的三边长是abc ,且m为正数,求证:a/(a +m)+b/(b+m)>c/(c+m)

解答:

做差
a/(a+m)+b/(b+m)-c/(c+m)
通分,
[abc(b+m)(c+m) +abc(a+m)(c+m)-abc(a+m)(b+m]/(a+m)(b+m)(c+m)

=[abc+2abm+(a+b-c)m]/(a+m)(b+m)(c+m)
∵a,b,c,m>0,a+b>c
分子分母均大于0
∴[abc+2abm+(a+b-c)m]/(a+m)(b+m)(c+m)>0
a/(a+m)+b/(b+m)-c/(c+m) >0
即a/(a+m)+b/(b+m)>c/(c+m)