首页 > 留学知识库

问题: 求下列三角函数最大最小值

1.y=sin(x/2)
2.y=sin(x+π/4)
3.y=3cos(2x-π/3)

求函数x取何值时,达到最大值;x取何值时,达到最小值?

求过程

解答:

以下所有k∈Z.
1.y=sin(x/2)
∵ x∈R, ∴ -1≤sin(x/2)≤1, ∴ -1≤y≤1.由x/2=2kπ±π/2,得
x=4kπ±π. ∴ x=4kπ-π时,Y(min)=-1, x=4kπ+π时,Y(max)=1
2.y=sin(x+π/4)
同1, -1≤y≤1.由x+π/4=2kπ±π/2,得x=2kπ-3π/4或x=2kπ+π/4 ∴ x=2kπ-3π/4时,Y(min)=-1, x=2kπ+π/4时,Y(max)=1
3.y=3cos(2x-π/3)
同1, -3≤y≤3.由2x-π/3=2kπ±π/2,得x=kπ-π/12或x=kπ+5π/12 ∴ x=kπ-π/12时,Y(min)=-3, x=kπ+5π/12时,Y(max)=3