问题: 还是数学三角形
a(1-2cosA)+b(1-2cosB)+c(1-2cosC)=0
求证ABC为正三角形
解答:
sin2A+sin2B+sin2C=2sin(A+B)cos(A-B)+sin2C
=2sinCcos(A-B)+2sinCcosC=2sinC[cos(A-B)+cosC]
=4sinCsinAsinB
sinA+sinB+sinC=2sin[(A+B)/2]cos[(A-B)/2]+sinC
=2cos(C/2)cos[(A-B)/2]+2sin(C/2)cos(C/2)
=2cos(C/2){cos[(A-B)/2]+sin(C/2)}
=4cos(C/2)cos(A/2)cos(B/2)
a(1-2cosA)+b(1-2cosB)+c(1-2cosC)=0
sinA+sinB+sinC-(sin2A+sin2B+sin2C)=0
(sin2A+sin2B+sin2C)/(sinA+sinB+sinC)=
8sin(C/2)sin(A/2)sin(B/2)=1
而:
cosA+cosB+cosC=2sin(C/2)cos[(A-B)/2]+cosC
=1+2sin(C/2)[cos[(A-B)/2]-sin(C/2)]
=1+4sin(C/2)sin(A/2)sin(B/2)
∴cosA+cosB+cosC=3/2
既:
[sin(A/2)]^+ [sin(B/2)]^+ [sin(C/2)]^=3/4
8sin(C/2)sin(A/2)sin(B/2)=1
待续
没着了!!!!!
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。