首页 > 留学知识库

问题: 向量

1.设向量a=(cos23度,cos67度),b=(cos68度,cos22度),u=a+tb(t属于R),求|u|的最小值
2.设tan2a=-2根号2,2a属于(拍/2,拍),求(cos^2拍/2-sina-1)/根号2sin(a+拍/4)

解答:

1.设向量a=(cos23度,cos67度),b=(cos68度,cos22度),u=a+tb(t属于R),求|u|的最小值
解: u=a+tb=[cos23°+tcos68°,cos67°+tcos22°]
|u|^=(cos23°+tcos68°)^+(cos67°+tcos22°)^
=(sin67°+tsin22°)^+(cos67°+tcos22°)^
=(sin67°)^+(tsin22°)^+2tsin67°sin22°+(cos67°)^+(tcos22°)^+2tcos67cos22°
=1+t^+2tcos45°
=t^+t√2+1
[|u|^]min=1/2
[|u|]min=√2/2
2.设tan2a=-2√2,2a属于(π/2,π),求(cos^2π/2-sina-1)/√2sin(a+π/4)
解:tan2a=-2√2=2tana/[1-(tana)^]
(tana-√2)(tana√2+1)=0
tana=√2 or tana=-√2/2
π/2<2a<π π/4<a<π/2
∴tana=√2
[(cosπ/2)^-sina-1]/√2sin(a+π/4)
=[1-sina-1]/(sina+cosa)
=-sina/(sina+cosa)=-tana/(tana+1)
带入即可。