问题: 函数题
解答:
(1/2)[f(x1)+f(x2)]=(1/2)[lg(1/x1 -1)+lg(1/x2 -1)]
=(1/2)lg(1/x1 -1)(1/x2 -1)
=(1/2)lg[(1-x1)(1-x2)/x1x2]
(1/2)[f(x1)+f(x2)]- f[(x1+x2)/2]
=(1/2)lg[(1-x1)(1-x2)/x1x2] -lg[(x1+x2)/2]
=(1/2)lg[(1-x1)(1-x2)/x1x2] -(1/2)lg[(x1+x2)^/4]
=(1/2)lg[4(1-x1)(1-x2)]/[x1x2(x1+x2)^] ........(1)
只需考察真数部分的大小即可判断正负
4(1-x1)(1-x2)]/[x1x2(x1+x2)^]
因为为,x在(0,1/2)
===>(1-x1)(1-x2)>x1x2
显然4>(x1+x2)^
所以,真数大于1
===>(1)式大于0
===>(1/2)[f(x1)+f(x2)] > f[(x1+x2)/2]
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。