问题: 函数
看图
解答:
令m>0 ,n =0
则0<f(m)<1
===>f(m+n)=f(m)=f(m)f(0)
因为0<f(m)<1
====>f(0) =f(m)/f(m)=1
x<0 , 令N>-x ,
则0<f(N)<1
0<f(x+N)<1
显然, N>x+N
设N =x+N +(-x)
f(N) =f(x+N)f(-x)
0< f(-x)<1 ======>f(N)<f(x+N) .............(1)
f(x+N) =f(x)f(N)
f(x) =f(x+N)/f(N)
由(1)得,f(x)>1
2)
设x1>0,x2>0
x1+x2>x1
f(x1),f(x2)都在(0,1)
f(x1+x2) =f(x1)f(x2)<f(x1)
===>x>0,f(x)单调递减
设x1<x2<0
x1+x2<x1
f(x1)>1,f(x2)>1
f(x1+x2) =f(x1)f(x2)>f(x1)
==>x<0,f(x)单调递减
===>f(x)在R单调递减
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。