首页 > 留学知识库

问题: 函数

看图

解答:

令m>0 ,n =0
则0<f(m)<1
===>f(m+n)=f(m)=f(m)f(0)
因为0<f(m)<1
====>f(0) =f(m)/f(m)=1

x<0 , 令N>-x ,
则0<f(N)<1
0<f(x+N)<1
显然, N>x+N
设N =x+N +(-x)
f(N) =f(x+N)f(-x)
0< f(-x)<1 ======>f(N)<f(x+N) .............(1)

f(x+N) =f(x)f(N)
f(x) =f(x+N)/f(N)
由(1)得,f(x)>1

2)
设x1>0,x2>0
x1+x2>x1
f(x1),f(x2)都在(0,1)
f(x1+x2) =f(x1)f(x2)<f(x1)
===>x>0,f(x)单调递减

设x1<x2<0
x1+x2<x1
f(x1)>1,f(x2)>1
f(x1+x2) =f(x1)f(x2)>f(x1)
==>x<0,f(x)单调递减

===>f(x)在R单调递减