问题: 已知三角形ABC三边成等差数列,最大角与最小角相差90度,求证:a:b:c=(根号7+1):(根号7
已知三角形ABC三边成等差数列,最大角与最小角相差90度,求证:a:b:c=(根号7+1):(根号7):(根号7-1),其中A为最大角,C为最小角。
解答:
设△ABC三边所成等差数列的公差为d,则a=b+d,c=b-d,
即三边长a,b,c分别为b+d,b,b-d.
设c边所对角为a,由于最大角与最小角相差90°,故a,b边所对角分别为90°+a,90°-2a,
由正弦定理,得
(b+d)/sin(90°+a)=b/sin(90°-2a)=(b-d)/sina
即 (b+d)/cosa=b/cos2a=(b-d)/sina
利用等比性质,得
b/cos2a=2b/(sina+cosa).
又 cos2a=cos²a-sin²a=(cosa+sina)(cosa-sina),
∴cosa-sina=1/2.
∴cosa-sina=1/2
sin²a+cos²a=1
解之,得 sina=(√7-1)/4,cosa=(√7+1)/4.
∴cos2a=cos²-sin²a=(cosa+sina)(cosa-sina)=√7/4.
由正弦定理,得
a:b:c=(b+d):b:(b-d)
=sin(90°+a):sin(90°-a):sin(90°-2a)
=cosa:cos2a:sina
=(√7+1):√7:(√7-1).
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。