首页 > 留学知识库

问题: 等差数列

在△ABC中,A,B,C分别为a,b,c所对角,且a,b,c成等差数列,则∠B适合的条件是

解答:

a,b,c成等差数列
正弦定理
==>2sinB =sinA+sinC =2sin[(A+C)/2]cos[(A-C)/2] ......(1)

因为sin[(A+C)/2] =cos[pai/2 -(A+C)/2]= cos(B/2)
且2sinB=4sin(B/2)cos(B/2)

所以,(1)====>2sin(B/2)=cos[(A-C)/2]
===>sin(B/2)=(1/2)cos[(A-C)/2]
A-C在[0,pai)
====>sin(B/2)在(0 ,1/2]
显然a,b,c成等差数列,B不可能是钝角
===>B/2在(0,30度]
====>B在(0,60度]