首页 > 留学知识库

问题: 如果sina sinb=2分之根号2,求cos(a b)的取值范围.

解答:

如果sina+sinb=(√2)/2,求cos(a+b)的取值范围.

解:
cos(a+b)
=cosacosb-sinasinb
=cosacosb-{[(sina+sinb)^2-(sina)^2-(sinb)^2]/2}
=cosacosb-{[(1/2)+cosa^2+cosb^2-2]/2}
=cosacosb-[(cosa^2+cosb^2)/2]+(3/4)
=(-1/2)(cosa^2+cosb^2-2cosacosb)+(3/4)
=(-1/2)(cosa-cosb)^2+(3/4)

cos(a+b)=(-1/2)(cosa-cosb)^2+(3/4)
当cosa-cosb=0时,[cos(a+b)]max=3/4
当cosa-cosb=±1时,[cos(a+b)]min=1/4

所以1/4≤cos(a+b)≤3/4